数学之美(第二版)读后感1500字(3)篇

在看吴军的《数学之美》之前,我并没有看过他写的《浪潮之巅》、《文明之光》等书,但是他主理的得到专栏《硅谷来信》已经听了很久,对吴军其人颇为了解——本硕毕业于清华大学,然后在约翰霍普金斯大学攻读博士,02年、10年先后在谷歌和腾讯任职,是著名的自然语言处理和搜索专家,现在主业是硅谷风险投资。他的专栏宣传标语是“像时代领航者一样思考”,吴军也确实具有“时代领航者”那样的视野和见识,除了专业领域之外,对于日常生活和学习、职业发展也有不俗的见解。
《数学之美》最初是吴军做谷歌研究员时,在谷歌黑板报上撰写的一系列文章。虽然谷歌黑板报的本意是让吴军从一个科学家的角度介绍一下谷歌的技术,但是他却更希望“让做工程的年轻人看到在信息技术行业做事情的正确方法”——因为吴军刚到谷歌时,发现谷歌早期的一些算法根本没有系统的模型和理论基础,而是用“凑”的方法解决问题,工程水平低下。国内这种情况就更加泛滥了。
后来,吴军又将这一系列博客几乎重写了一遍,写成了《数学之美》,希望它能向非IT行业的从业人员普及一些IT领域的数学知识,能成为茶余饭后消遣的科普读物。“世界上最好的学者总是有办法深入浅出地把大道理讲给外行听,而不是故弄玄虚地把简单的问题复杂化”,因此吴军尽力以伽莫夫(《从一到无穷大》作者)、霍金为榜样,力图将数学之美展示给所有普通读者。
由于我学习过概率论、数理统计、数据结构,整本书看下来,除了某些章节后的“延伸阅读”和马尔可夫链等内容外,其他都是可以看懂的。其实看不懂的部分主要是在用数学推理证明文中的论点,即使不看也不会影响阅读体验。
吴军在扉页讲道:“数学之美,首先在于其内容或许复杂而深奥,但形式常常很简单。同时,数学之美还在于数学原理的通用性和普遍性——数学上的一点突破,可以带动很多领域和行业的进步。”
我高中时曾因为数学的应用不明确而对其抱有偏见,直到大学接触到了数学建模。同样,这本书中讲到了许多数学在信息技术工程领域的应用,搭建了数学与应用之间的桥梁。
书中最令人印象深刻的例子就是通信。人与人之间的交流,也算是广义上的通信,因此通信与我们的生活息息相关。而数学在通信中的应用非常普遍,因为从电报、电话、电视到互联网,这些现代通信都遵从着信息论的规律,而整个信息论的基础就是数学。不仅如此,整个人类的自然语言和文字的起源背后,都受到数学规律的支配——因为数字和文字、自然语言一样,都是信息的载体;语言和数学产生的目的都是为了记录和传播信息。
一个典型的通信系统是这样的:发送者(人或者机器)发送信息时,需要采用一种能在媒体中(比如空气、电线)传播的信号,比如语音或者电话线的调制信号,这个过程是广义的编码。然后通过媒体传播到接收方,这个过程是信道传输。在接收方,接收者(人或者机器)根据事先约定好的方法,将这些信号还原成发送者的信息,这个过程是广义上的解码。
我们平时说话时,大脑就是一个信息源,声带、空气就是如电线、光缆般的信道,听众的耳朵就是接收器,而声音就是传送的信号。根据声学信号推测说话者的意思,就是语音识别。
语言实质上是一套编码、解码的规则。从字(字母)到词的构词法是词的编码规则,这套规则是完备的(有限且封闭的集合);从词到句的语法是语言的编码规则,这套规则是不完备的(无限和开放的集合)——任何语言都有语法覆盖不到的地方。
正是由于语法是不完备的规则,所以在自然语言处理的研究当中,基于规则的方法走向了一条死路。随着计算机性能和可用数据量的增加,基于统计的方法已经被广泛运用到自然语言处理中。书的第2章到第7章,围绕自然语言处理的统计学模型,讲述得深入浅出,而且对科学界的许多大师级人物和他们的贡献都做了介绍。
另一个绝妙的应用案例,是第14章《余弦定理和新闻的分类》。我们在高中都学过用余弦定理判断两个向量之间的夹角大小,然而不知道这样做有什么实际意义。如果当时我们的老师能举出文本分类作为例子,一定能让同学们兴奋不已。
如果由人来做新闻分类,人一定会先把文章读懂。但是计算机没有智能,根本读不懂新闻,它只拥有强大的计算能力。这就要求我们把文字组成的新闻变成一组可以计算的数字,然后设计一个算法,算出任意两篇新闻的相似性。
新闻传递信息,而词是信息的载体,“同一类新闻用词都是相似的,不同类的新闻用词各不相同”。当剔除掉“的、地、得”和“之乎者也”那样的助词和虚词之后,对新闻中剩下的实词,计算出每个词的出现频率(实际上更为复杂,因为只是一篇读书笔记,我就简化成“出现频率”了),再按照词在词汇表中出现的顺序,将这些频率值依次排列,就得到了这篇新闻的特征向量。
如果词汇表中的某个词在新闻中没有出现,对应的频率值为0。如果词汇表总共有64000个词,就会得到一个64000维的特征向量,向量中每一个维度的大小代表每个词对这篇新闻主题的贡献。新闻就这样,从文字变成了数字。
一篇10000字的文本,它的特征向量各个维度的数值普遍比一篇500字的文本要大,因此单纯比较各个维度的大小没有太大意义。但是,向量的方向却有很大的意义。如果两个向量的方向基本一致,说明它们的新闻用词比例基本一致。
因此,可以通过余弦定理计算两个特征向量之间的夹角,判断对应的新闻主题的接近程度。在真实的文本分类聚合过程中,需要自底向上不断合并,合并的过程中类别越来越少,而每个类越来越大。
另外值得一提的是,这项研究的动机很有意思。当时某个国际会议需要把提交上来的几百篇论文交给各个专家评审,把每个研究方向的论文交给这个方向最有权威的专家。作为会议程序委员会主席的雅让斯基教授为了偷懒,就想了这个将论文自动分类的方法,由他的学生弗洛里安很快实现了。
考虑到多次迭代的计算量,后文又介绍了矩阵奇异值分解的方法,将计算量缩小到1/6。
此外,书中还介绍了搜索引擎算法、拼音输入法等应用背后的数学模型。第19章《谈谈数学模型的重要性》中用托勒密的地心说模型(大圆套小圆)举例,讲:“正确的数学模型在科学和工程中至关重要,而发现正确模型的途径往往是曲折的。正确的模型在形式上通常是简单的。”
其实这本书中,除了IT领域的数学应用之外,还有许多值得深挖的地方。看书的过程中,我有时会突然从书中的观点联想到其他地方看过的观点。比如讲信息和情报时说到斯大林在中苏边界的60万大军不敢轻易调到欧洲战场,就联系到《日本大败局》里日本明知必败却执意南下进攻,偷袭珍珠港;比如讲信息论中“冗余度”的概念时,联系到罗胖“冗余度大是优势,信息传播效率反而高”的看法;讲到数学模型的重要性时,想到黎曼的非欧几何对相对论、超空间研究的重大意义……
其实大多情况下,看书只是用来怡情、消遣的手段,和打牌、玩游戏本质上是一样的。读书的过程中经常会灵光乍现,这就是读书的乐趣。
数学之美(第二版)读后感1500字 第(2)篇吴军2012年的作品,源于其在谷歌黑板报的系列文章,讲述数学方法在信息技术中的应用,说明了为什么科学研究中方法论如此的重要,以及数学如何简单优雅地解决问题,直达本质。对比他的其他作品比如《浪潮之巅》、《硅谷之谜》,本书比较偏技术,属于目前大热的数据科学(Data Science)范畴,在云计算、大数据和人工智能等成为常态和趋势的今天,适合所有对IT技术及相关管理人员阅读。对我而言,最大的收获包括:
- 规则 vs. 算法:自然语言处理,在早期几十年基于文法规则都无法达到可应用的效果,终于在转变为基于统计方法且积累了足够数据后,形成了突破,达到了今日可大规模商用的效果。再次说明了数据及算法在今日的重要性。
- 一些常见应用涉及的优化算法:搜索相关(分词、网络爬虫、索引、结果排名、广告及反作弊)、文本处理(新闻分类、广告相关性、输入法)、地图路线规划、信息指纹、密码学等。这些算法不止适用于这些应用场景,还可以在其他许多地方借鉴,比如用户评论分析也需要用分词和语义分析,许多价值优化算法都需要用到期望值最大化和逻辑回归等。
- 优雅的理论模型:在初始阶段,出于时间和成本考虑,在技术实现上可能会使用一些拼凑的方法,甚至山寨,但是这种方法并不可持续,很难进行系统化的优化,开发维护成本都很高,最终会遇到灾难性问题。做事情需要有境界,最求简单而优雅的理论和工程实现,这在长期是非常有好处的。
吴军使用浅显易懂的语言,把解决问题的思路和复杂的数学模型讲得很清楚,虽然理解延伸阅读里的具体数学公式还是有些挑战。其实重要的是思想和方法,具体的实现可以在用到时再进一步的了解。如何用简单的语言把复杂的技术讲清楚,也是我工作的需要,要不断学习磨练。书里提到了启发吴军这方面能力的两本书,即《从0到无穷大》和《时间简史》,会有要去看下。
数学之美(第二版)读后感1500字 第(3)篇重复的体力劳动已经被机器取代,重复的脑力劳动也将被AI取代。
目前的算法更多的是从统计学、概率论角度来执行,其算法依靠人为设定执行,今后AI的介入,算法会趋于自我迭代、自我演化。
就整体而言机器的搜索、筛选、分析、逻辑推理等,都是基于当前情况最大概率决策。即通过算法计算下一步所有可能情况的概率分布,然后得出实现目标哪种决策成功概率最高,即为下一步的方案。
在这种环境下人最好的方式便是与机器合作,将资源分配到这些大概率事件上,当然也会有一部分人怀有赌徒心态,将资源,甚至全部资源分配到小概率事件上,幻想出现奇迹,而这件事就叫“创新”。
但“创新”才是真正的未来,因为从宇宙角度来看,人类诞生的几率不到万亿分之一,而这是多么伟大的奇迹,又是多么伟大的创新!