超几何分布

超几何分布是统计学上一种离散概率分布。它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还)。
在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,则P(X=k)=C(M,k)·C(N-M,n-k)/C(N,n), C(a b)为古典概型的组合形式,a为下限,b为上限,此时我们称随机变量X服从超几何分布(hypergeometric distribution)
(1)超几何分布的模型是不放回抽样
(2)超几何分布中的参数是M,N,n上述超几何分布记作X~H(N,n,M)。
- 中文名 超几何分布
- 外文名 Hypergeometric distribution
- 类别 数学名词
- 用于 统计学
英文名
英:Hypergeometric Distribution |
引出
产品抽样检查中经常遇到一类实际问题,假定在N件产品中有M件不合格品,即不合格率p=M/N。在产品中随机抽n件做检查,发现k件不合格品的概率为P(X=k)=C(M,k)*C(N-M,n-k)/C(n,N),k=0,1,2,...,min{n,M}。通常称这个随机变量X服从超几何分布。这种抽样检查方法等于无放回抽样。数学上不难证明,N趋近无穷,limC(k,M)*C(n-k,N-M)/C(M,N)=B(n,p) (二项分布) 因此,在实际应用时,只要N>=10n,就可用二项分布近似描述不合格品个数。
也就是已经知道某个事件的发生概率,判断从中取出一个小样本,该事件以某一个机率出现的概率问题。
例子:假设细胞中有某种现象以90%的几率在发生着,被我们的三次实验抓到三次的几率是多大呢?不过可惜的是我们往往不能知道某个事件发生的先验的概率。不过至少可以拿来做假设检验。
应用
例:在一个口袋中装有30个球,其中有10个红球,其余为白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.摸到至少4个红球就中一等奖,那么获一等奖的概率是多少?
解:由题意可见此问题归结为超几何分布模型。
其中N = 30. M = 10. n = 5.
P(一等奖) = P(X=4 or 5) = P(X=4) + P(X=5)
由公式P(X=k)=C(k,M)*C(n-k,N-M)/C(n,N),k=0,1,2,...得:
P(X=4) = C(4,10)*C(1,20)/C(5,30)
P(X=5) = C(5,10)*C(0,20)/C(5,30)
P(一等奖) = 106/3393
期望
对X~H(N,M,n),E(x)=nM/N
证明:引理一:∑{C(x,a)*C(d-x,b),x=0..min{a,d}}=C(d,a+b),考察(1+x)^a*(1+x)^b中x^d的系数即得。(另:还可以由超几何分布1=∑P(X=K),k=0,1,2....n得)
引理二:k*C(k,n)=n*C(k-1,n-1),易得。
正式证明:
EX=∑{k*C(k,M)*C(n-k,N-M)/C(n,N),k=0..min{M,n}}
=1/C(n,N)*∑{M*C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}}
//(提取公因式,同时用引理二变形,注意k的取值改变)
=M/C(n,N)*∑{C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}} (提取,整理出引理一的前提)
=M*C(n-1,N-1)/C(n,N) (利用引理一)
=Mn/N (化简即得)
方差
对X~H(N,M,n),D(X)=nM(N-M)(N-n)/[(N^2)(N-1)]
证明:
DX=E(X^2)-(EX)^2 (此公式利用定义式简单展开即得)
=∑{k^2*C(k,M)*C(n-k,N-M)/C(n,N),k=0..min{M,n}}-(Mn/N)^2
=1/C(n,N)*∑{M*k*C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}}-(Mn/N)^2(提取,变形)
=M/C(n,N)*∑{(k-1)*C(k-1,M-1)*C(n-k,N-M)+C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}}-(Mn/N)^2
(拆项,变形)
=M/C(n,N)*∑{(M-1)*C(k-2,M-2)*C(n-k,N-M),k=2..min{M,n}}+M/C(n,N)*∑{C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}}-(Mn/N)^2 (拆开∑,就是分组求和)
=M(M-1)*C(n-2,N-2)/C(n,N)+Mn/N-(Mn/N)^2
=nM(N-M)(N-n)/[(N^2)(N-1)] (化简即得)
超几何分布期望与方差和二项分布的联系
视M/N=p
则EX=np
DX=np(1-p)*(N-n)/(N-1)
可以看出,均值的公式形式上与二项分布是一至的,而方差也只相差(N-n)/(N-1)。
这一点即有利于对这两个公式的记忆,又从另一个角度说明了:"因此,在实际应用时,只要N>=10n,可用二项分布近似描述不合格品个数。"
补充一个ASP的计算程序,估计明白计算机语言的大家都能看明白:已经去掉了大数阶乘溢出的问题。
函数
function HYPGEOMDIST(kkk,n,MM,NN) '超几何分布计算函数
for k=kkk to n
AA=1
BBA=1
BBB=1
lll=n
for i= 0 to k-1
BBA=BBA*(MM-i)/(NN-i)
next
for j= k to n
BBB=BBB*(NN-MM-j+k)/(NN-j)
next
BBs=BBB*BBA
if lll-k>k then
x=K
Else x=lll-k
end if
for i=1 to x
lll=lll-1
next
HYPGEOMDIST=HYPGEOMDIST+BBS
next
end function
response.write HYPGEOMDIST(200,2200,1000,17000)
%>
参考公式
参数 | |
---|---|
支撑集 | |
概率质量函数 | |
期望值 | |
众数 | |
方差 | |
偏度 | |
峰度 | |
动差生成函数 | |
特性函数 |