当前位置首页 > 百科资料> 正文

无偏估计量

2022-06-28 18:47:48 百科资料

无偏估计量定义是设^θ(X1,X2,…,Xn)是θ的估计量,若E(^θ)=θ,对一切θ∈Θ,则称^θθ的无偏估计量,否则称为θ的有偏估计量。目的是数学期望等于被估计的量的统计估计量。

  • 中文名 无偏估计量
  • 外文名 unbiased estimator
  • 目的 确定一个估计量的好坏
  • 确定 数学期望等于被估计的量
  • 性质1 无偏性

无偏性

  对于待估参数,不同的样本值就会得到不同的估计值。这样,要确定一个估计量的好坏,就不能仅仅依据某次抽样的结果来衡量,而必须由大量抽样的结果来衡量。对此,一个自然而基本的衡量标准是要求估计量无系统偏差。也就是说,尽管在一次抽样中得到的估计值不一定恰好等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同,换句话说,希望估计量的均值(数学期望)应等于未知参数的真值,这就是所谓无偏性(Unbiasedness)的要求。

  数学期望等于被估计的量的统计估计量。

举例

  下面说明题目中的四个估计量都是λ的无偏估计量。首先,因为ξ1、ξ2、ξ3 都是取自参数为λ的泊松总体的样本,独立同分布,所以它们的期望和方差都是λ ,则

  (1)无偏性E(λ1∧)= E(ξ1)= λE(λ2∧)= E[(ξ1+ξ2)/2]= (λ+λ)/2 = λE(λ3∧)= E[(ξ1+2*ξ2)/3]= (λ+2λ)/3 = λE(λ4∧)= E[(ξ1+ξ2+ξ3)/3]= (λ+λ+λ)/3 = λ

  (2)有效性,即最小方差性D(λ1∧)= D(ξ1)= λD(λ2∧)= D[(ξ1+ξ2)/2]= [D(ξ1)+D(ξ2)]/4= (λ+λ)/4 = λ/2D(λ3∧)= D[(ξ1+2*ξ2)/2]= [D(ξ1)+4D(ξ2)]/9= (λ+4λ)/9 = 5λ/9D(λ4∧)= D[(ξ1+ξ2+ξ3)/3]= [D(ξ1+ξ2+ξ3)]/9 =(λ+λ+λ)/9 = λ/3其中 D(λ4∧)= λ/3 最小,所以无偏估计量 λ4∧最有效。

应用

  在实际应用中,对整个系统(整个实验)而言无系统偏差,就一次实验来讲,可能偏大也可能偏小,实质上并说明不了什么问题,只是平均来说它没有偏差,所以无偏性只有在大量的重复实验中才能体现出来;另一方面,无偏估计只涉及一阶矩(均值),虽然计算简便,但往往会出现一个参数的无偏估计有多个,而无法确定哪个估计量好。因此,无偏性的作用在于可以把重复估计中的各次误差通过平均来消除。这并不意味着该估计量在一次使用时并能获得良好的结果。在具体问题中,无偏性是否合理,应当结合具体情况来考虑。在有些问题中,无偏性的要求可能会导出不同的结果来。

  事实上,中的每一个均可作为θ的无偏估计量,究竟哪个估计量更合理,就看哪个估计量的观察值更接近真实值,即估计量的观察值更密集地分布在真实值附近。而方差能反映随机变量取值的分散程度,所以无偏估计以方差最小者为最好、最合理,为此后人引进了估计量的有效性概念。

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:baisebaisebaise@yeah.net