当前位置首页 > 百科资料> 正文

回归方程复相关系数

2022-07-11 10:15:43 百科资料

显著性检验

  ​(1) 回归平方和与剩余平方和

  建立回归方程以后, 回归效果如何呢?因变量与自变量是否确实存在线性关系呢?这是需要进行统计检验才能加以肯定或否定, 为此, 我们要进一步研究因变量取值的变化规律。的每次取值是有波动的, 这种波动常称为变差, 每次观测值的变差大小, 常用该次观侧值与次观测值的平均值的差(称为离差)来表示, 而全部次观测值的总变差可由总的离差平方和,

  其中:

  称为回归平方和, 是回归值与均值之差的平方和, 它反映了自变量的变化所引起的的波动, 其自由度(为自变量的个数)。

  称为剩余平方和(或称残差平方和), 是实测值与回归值之差的平方和, 它是由试验误差及其它因素引起的, 其自由度。总的离差平方和的自由度为。

  如果观测值给定, 则总的离差平方和是确定的, 即是确定的, 因此大则小, 反之, 小则大, 所以与都可用来衡量回归效果, 且回归平方和越大则线性回归效果越显著, 或者说剩余平方和越小回归效果越显著, 如果=0, 则回归超平面过所有观测点; 如果大, 则线性回归效果不好。

  (2) 复相关系数

  为检验总的回归效果, 人们也常引用无量纲指标

  , (3.1)

  或, (3.2)

  称为复相关系数。因为回归平方和实际上是反映回归方程中全部自变量的“方差贡献”, 因此就是这种贡献在总回归平方和中所占的比例, 因此表示全部自变量与因变量的相关程度。显然。复相关系数越接近1, 回归效果就越好, 因此它可以作为检验总的回归效果的一个指标。但应注意, 与回归方程中自变量的个数及观测组数有关, 当相对于并不很大时, 常有较大的值, 因此实际计算中应注意与的适当比例, 一般认为应取至少为的5到10倍为宜。

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:baisebaisebaise@yeah.net