当前位置首页 > 百科> 正文

余建波(同济大学教授)

2019-06-25 05:33:40 百科

余建波(同济大学教授)

内容声明:以下内容为本人提供,词条内容的真实性由本人负责,如有质疑欢迎举报。

余建波,博士,男,1978年生,浙江慈谿人。2009年获上海交通大学机械工程工业工程方向博士学位。现为同济大学工业工程研究所教授,博士生导师。研究领域有设备智慧型预诊维护与可靠性、複杂製造过程质量控制、机器学习、生产系统设计最佳化。目前主持一项国家自然科学基金面上项目,上海市教委创新基金,上海市航天科技创新基金,慈谿市创新创业项目,以及若干项企业委託项目;已经结题完成一项国家自然科学基金(青年基金),教育部博士点基金,国家重点实验室开放基金,上海市优青项目,以及若干项企业委託项目。作为主要完成人,参加多项国家自然科学基金、科技部支撑计画、企业委託项目等,以及一项美国自然基金项目和两项美国知名企业委託项目。目前担任Advances in Mechanical Engineering (SCI检索), Chinese Journal of Engineering和Journal of Advanced Manufacturing Research国际期刊编辑委员会的成员。受邀担任近30多个国际期刊的审稿人,包括《IEEE Transactions on Industrial Electronics》、《Journal of Manufacturing Science and Engineering- Transactions of the ASME》、《IEEE Transactions on Energy Conversion》、《IEEE Transactions on Industrial Informatics》、《IEEE Transactions on CIRCUITS-II》、《IEEE Transactions on Neural Network》、《IEEE Transactions on Instrumentation and Measurement》、《Mechanical System and Signal Processing》等。

基本介绍

  • 中文名:余建波
  • 外文名:Jianbo Yu
  • 国籍:中国
  • 民族:汉
  • 出生地:浙江慈谿
  • 出生日期:1978
  • 职业:教师,研究员
  • 毕业院校:上海交通大学
  • 信仰:共产主义
  • 主要成就:2015年中国高被引学者工业与製造工程部第八名
  • 代表作品:Statistical learning-based approach for multivariate manufacturing process control

主要成就

在设备智慧型预诊维护与可靠性、複杂製造过程质量控制、机器学习、生产系统设计最佳化等研究领域,申请国家专利4项(授权1项),发表英文专着一章(负责第11章),已在国内外学术期刊(包括IEEE/ASME Trans系列着名期刊长文6篇)上发表学术论文近40篇,其中以第一作者(或通讯作者)身份在SCI 源期刊上发表26篇论文,发表的学术论文已经被国内外同行引用总计近570次(其中SCI期刊他超250次),单篇最高引用超85次。入选爱思唯尔发布2015年中国高被引学者(Most Cited Chinese Researchers)工业与製造部第八名。录用或发表的重要国际期刊包括:《IEEE Transactions on Industrial Electronics》、《IEEE Transactions on Semiconductor Manufacturing》、《IEEE Transactions on Instrumentation and Measurement》、《Journal of Manufacturing Science and Engineering-Transactions of the ASME》、《Mechanical Systems and Signal Processing》、《Journal of Process Control》、《Applied Soft Computing》、《Computers In Industry》等。

代表论文

[1] Jianbo Yu, Process monitoring through manifold regularization-based GMM with global/local information, Journal of Process Control, 45, 84-99, Sep. 2016.
[2] Jianbo Yu, Machinery Fault diagnosis using joint global and local/nonlocal discriminant analysis with selective ensemble learning, Journal of Sound and Vibration, 382, Nov.2016, 340-356.
[3] Jianbo Yu, Adaptive Hidden Markov model-based online learning framework for bearing faulty detection and performance degradation monitoring, Mechanical Systems and Signal Processing, 83, 2017, 149.162.
[4] Jianbo Yu, Lu Xiaolei, Wafer map defect detection and recognition using joint local and nonlocal linear discriminant analysis, IEEE Transactions on Semiconductor Manufacturing, 29(1), 00.33-43, Feb. 2016.
[5] Jianbo Yu, Machine health prognostics using Bayesian-inference-based probabilistic indication and high-order particle filtering framework, Journal of Sound and Vibration, 358(8), pp.97-110, Dec. 2015.
[6] Jianbo Yu, State-of-Health Monitoring and Prediction of Lithium-Ion Battery Using Probabilistic Indication and State Space Model, IEEE Transactions on Instrumentation and Measurement, 64(11), 2015, pp.2937-2949.
[7] Jianbo Yu, Health degradation detection and monitoring of Lithium-Ion battery based on adaptive learning method, IEEE Transactions on Instrumentation and Measurement, vol.63, no.7, 2014, pp.1709-1721.
[8] Jianbo Yu, A nonlinear probabilistic method and contribution analysis for machine condition monitoring, Mechanical Systems and Signal Processing, 37(1-2), 2013, pp. 293-314.
[9] Jianbo Yu, Local and nonlocal preserving projection for bearing defect classification and performance assessment, IEEE Transactions on Industrial Electronics, vol.59, no.5, 2012, pp. 2363-2376.
[10] Jianbo Yu, Health condition monitoring of machines based on hidden Markov model and contribution analysis, IEEE Transactions on Instrumentation and Measurement, vol.61, no.8, 2012, 2200-2211.
[11] Jianbo Yu, Semiconductor manufacturing process monitoring using Gaussian mixture model and Bayesian method with local and nonlocal information,IEEE Transactions on Semiconductor Manufacturing, vol.25, no.3, 2012, pp. 480-493.
[12] Jianbo Yu, Machine tool condition monitoring based on an adaptive Gaussian mixture model, Journal of Manufacturing Science and Engineering- Transactions of the ASME, vol.134, no.3, 2012, pp. 031004-(1-13pages).
[13] Jianbo Yu, Local and global principal component analysis for process monitoring, Journal of Process Control, vol.22, no.7, 2012, pp.1358-1373.
[14] Jianbo Yu, Gaussian mixture models-based control chart pattern recognition, International Journal of Production Research, vol.50, no.23, 2012, pp.6746-6762.
[15] Jianbo Yu, Fault detection using principal components based Gaussian mixture model for semiconductor manufacturing processes, IEEE Transactions on Semiconductor Manufacturing, vol.24, no.3, 2011, pp.432-444.
[16] Jianbo Yu, Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models, Mechanical Systems and Signal Processing, vol.25, no.7, 2011, 2573-2588.
[17] Jianbo Yu, A hybrid feature selection scheme and self-organizing map model for machine health assessment, Applied Soft Computing, vol.11, no.5, 2011, pp.4041-4054.
[18] Jianbo Yu, Bearing performance degradation assessment using locality preserving projections, Expert Systems with Applications, vol.38, no.6, 2011, pp.7440-7450.
[19] Jianbo Yu, Online tool wear prediction in drilling operations using selective artificial neural network ensemble model, Neural Computing & Applications, vol.20, no.4, 2011, pp.473-485.
[20] Jianbo Yu, Meifang Liu, Hao Wu, Local preserving projections-based feature selection and Gaussian mixture model for machine health assessment, Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 2011, vol.225, no.7 pp.1703-1717.
[21] Jianbo Yu, Pattern recognition of manufacturing process signals using Gaussian Mixture models-based recognition system, Computers & Industrial Engineering, vol.61, no.3, 2011, pp. 881-890.
[22] Jianbo Yu, Jianping Liu. LRProb control chart based on logistic regression for monitoring mean shifts of auto-correlated manufacturing processes, International Journal of Production Research, vol.49, no.8, 2011, pp.2301-2326.
[23] Jianbo Yu, Hidden Markov Models Combining Local and Global Information for Nonlinear and Multimodal Process Monitoring, Journal of Process Control, vol.20, no.3, 2010, pp.344-359.
[24] Jianbo Yu, Shijing Wang, Using Minimum Quantization Error Chart for the Monitoring of Process States in Multivariate Manufacturing Processes,Computers & Industrial Engineering, vol.57, no.4, 2009, pp.1300-1312.
[25] Jianbo Yu, Lifeng Xi. A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes. Expert Systems With Applications, vol.36, no.1, 2009, pp.909-921.
[26] Jianbo Yu, Lifeng Xi, Xiaojun Zhou. Intelligent Monitoring and Diagnosis of Manufacturing Processes Using an Integrated Approach of KBANN and GA, Computers in Industry. vol.59, no.5, 2008, pp.489-501.
[27] Jianbo Yu, Lifeng Xi. A Hybrid Learning-based Model for On-line Monitoring and Diagnosis of Out-of-control Signals in Multivariate Processes, International Journal of Production Research, vol.47, no.15, 2009, pp.4077–4108.
[28] Jianbo Yu, Lifeng Xi, Xiaojun Zhou. Identifying Source(s) of Out-of-control Signals in Multivariate Manufacturing Processes Using Selective Neural Network Ensemble, Engineering Applications of Artificial Intelligence, vol.22, no.1, 2009, pp.141-152.
[29] Jianbo Yu, Lifeng Xi. Using MQE Chart Based on Self-Organizing Map (SOM) Neural Network for Monitoring Out-of-control Signals in Manufacturing Processes. International Journal of Production Research, vol.46, no.21, 2008, pp.5907–5933.
[30] Jianbo Yu, Shijin Wang, Lifeng Xi. Evolving Artificial Neural Networks Using an Improved PSO and DPSO. Neurocomputing, vol.71, no.4-6, 2008, pp.1054-1060. (Most Cited Neurocomputing Articles)
[31] Jianbo Yu, Lifeng Xi, Shijin Wang. An Improved Particle Swarm Optimization for Evolving Feedforward Artificial Neural Networks. Neural Processing Letters, vol.26, no.3, 2007, 217-231.
[32] Jianbo Yu, Lifeng Xi. Intelligent monitoring and diagnosis of manufacturing process using an integrated approach of neural network ensemble and genetic algorithm. International Journal of Computer Applications in Technology, vol.33, no.2/3, 2008, pp.109–119.
[33] Shijin Wang,Jianbo Yu, Edzel Lapira, Jay Lee,A modified support vector data description based novelty detection approach for machinery components,Applied Soft Computing, vol.13, no.2, 2013, pp.1193–1205.
[34] Bin Wu and Jianbo Yu. A neural network ensemble model for on-line monitoring of process mean and variance shifts in correlated processes, Expert Systems with Applications, vol.37, no. 6, 2010, pp.4058-4065
[35] Shijin Wang and Jianbo Yu, An effective heuristic for flexible job-shop scheduling problem with maintenance activities, Computers & Industrial Engineering,vol.59, no.3, October 2010, pp.436-447.
[36] Tianyi Wang, Jianbo Yu, Siegel, D., and Lee, J. A similarity-based prognostics approach for remaining useful life estimation of engineered systems,Prognostics and Health Management, 2008. PHM 2008. International Conference on, Denver, CO,6-9 Oct. 2008,pp.1–6.
[37] Jianbo Yu, Lifeng Xi. A Neural Network Ensemble Approach for the Recognition of SPC Chart Patterns. Natural Computation, 2007. ICNC 2007. Third International Conference on, 2, 24-27 Aug. 2007:575 - 579.
[38] Jianbo Yu, Lifeng Xi. A Neural Network Ensemble for Classifying Source(s) in Multivariate Manufacturing Processes, 2007 IEEE International Conference on Industrial Engineering and Engineering Management, 2007, 1246-1250.
[39] J. Yu, A review for manifold learning-based statistical process Control, 11th International Symposium on Measurement and Quality Control, Cracow and Kielce, POLAND, 2013, 1-3.
[40] 卢笑蕾,余建波*,基于混合模型与流形调节的晶圆表面缺陷识别,计算机集成製造,42(1),2016, 47-59.
[41] 余建波*,卢笑蕾,宗卫周,基于局部与非局部线性判别分析和高斯混合模型动态集成的晶圆表面缺陷探测与识别,自动化学报,42(1), Jan.2016, 47-59.
[] 吴斌,卢笑蕾,余建波 ,晶圆表面缺陷模式的线上探测与自适应识别研究,计算机工程与套用,2016年 52(17), 261-266.
[42] 陈思汉,余建波*,基于二维局部均值分解的图像分析处理,计算机辅助设计及图形学学报,27(10),1842-1850,2015.
[43] 陈思汉,余建波*,基于二维局部均值分解的自适应保真项全变分图像滤噪方法,计算机辅助设计及图形学学报,28(6), 2016, 986-994.
[44] 陈思汉,余建波*,基于二维局部均值分解的图像边缘检测算法,计算机科学与探索,10(6), 2016, 847-855.
[45] 杨梅,陈思汉,吴昊,余建波,LMD滤噪算法及在旋转机械转子故障诊断中的套用,噪声与振动控制,2015 vol.35, no.2, 2015, 160-164.
[46] 刘美芳,尹纪庭, 余建波*, 基于SOA的工程机械远程智慧型预诊维护系统研究,中国机械工程. Vol.23, no.19, 2012, pp.2320-2326.
[47] 刘美芳, 尹纪庭, 余建波*, 基于贝叶斯推论和自组织映射的轴承性能退化评估方法, 计算机集成製造系统,v.18, no.10, 2012, pp.2237-2244.
[48] 吴斌,余建波,奚立峰,周炳海, 智慧型重构製造控制系统集成框架, 计算机集成製造系统, vol.14, no.1, 2008, 73-78.
[49] 尹纪庭,袁佳,余建波*, 智慧型家居系统研究综述, 中国科技论文线上, 2012, 1-9.
[50] 尹纪庭,袁佳,余建波*. LED景观灯照明智慧型控制系统. 计算机工程, 2013, 39(9): 317-320.
[51] 尹纪庭, 袁佳,焦志曼,吴斌,张在房,余建波*, 基于ARM和Zigbee的智慧型家居控制系统研究与开发, 计算机测量与控制, 2013, 21(9), 2451-2454.
[52] 袁佳,焦志曼,余建波*,LED节能照明智慧型控制系统综述, 中国科技论文线上, 2013, 1-13.
[53] 杨梅,陈思汉,余建波*,旋转机械故障智慧型诊断系统研究, 中国科技论文线上, 2014, 1-14.
[54] 袁佳,焦志曼,余建波*,基于Internet和ZigBee的製造车间分散式远程监测系统,机械製造,2014年第52卷第8期,70-74
[55] 焦志曼,袁佳,余建波*,面向网路化车间製造的工序质量智慧型控制系统,机械製造, 2014年第52卷第6期,1-5.
余建波,李传峰,吴昊,陈辉,基于自组织混合模型的多变数航天产品加工过程控制方法研究,《上海航天》 2016, 33(5):42-49
[56]余建波,宗卫周,程辉《基于CSMA/CA的电力载波并发通讯及在照明控制套用研究》,东北大学学报,已经录用,2016年1月。
[57]吕靖香;*余建波, 基于多层混合滤噪的轴承早期弱故障特徵提取方法, 振动与冲击,2017录用

专着:

Jianbo Yu, Statistical learning-based approach for multivariate manufacturing process control, The 11 Chapter of Data Mining for Zero-Defect Manufacturing, Editor: Kesheng Wang and Yi Wang, Tapir Academic Press, 2012 (ISBN: 978-82-519-2776-5).

主持项目:

(1)国家自然科学基金(面上项目),“机械设备性能退化的流形特徵建模与量化评估预测研究”,(2014年1月-2017年12月,编号:51375290,70万,余建波,项目主持人);
(2)国家自然科学基金(青年项目),“基于统计学习方法的複杂多变数製造过程质量的建模与控制研究”,(2011年1月-2013年12月,编号:71001060,17.7万,余建波,项目主持人);
(3)上海市教育委员会科研创新项目:“旋转机械设备性能退化的量化评估与预测研究” (2013年1月-2015年12月,编号:13YZ002,8万,余建波,项目主持人);
(4)企业委託项目,“流动式起重机远程监控系统开发套用研究”,山东省特种设备检验研究院,(2013年11月5日 至 2014年3月30日,5万,余建波,项目主持人);
(5)企业委託项目,高铁动车组vip座椅控制器单元及车载控制电气系统,(2014年5月1日 至 2014年12月30日,12.5万,余建波,项目主持人);
(6)教育部高等学校博士点基金课题项目:“複杂多变数製造过程的状态量化监控与故障溯源研究”,(2011年1月-2013年12月,编号: 20103108120010 ,3.6万,余建波,项目主持人);
(7)机械製造系统工程国家重点实验室开放课题基金,“複杂製造系统质量建模与诊断体系研究”,(2010年5月-2012年5月,编号:2010008,8万,余建波,项目主持人,已结题);
(8)无锡530创新创业基金B类项目,“设备健康预诊与管理系统”,(2010年3月-2013年3月,60万,余建波,项目主持人,已结题);
(9)慈谿市上林英才创新创业基金B类项目,“嵌入式电子系统与设备智慧型维护系统”,(2013年3月-2016年3月,50万,余建波,项目主持人);
(10)上海市优青专项基金,“基于统计学习方法的设备智慧型预诊维护研究”,(2010年6月-2012年6月,6万,余建波,项目主持人,已结题);
(11)上海大学创新基金,“基于智慧型学习的製造过程质量控制研究”,(2009年9月-2011年9月,5万,余建波,项目主持人,已结题);

国家发明专利:

[1] 余建波,尹纪庭,刘美芳,大规模半导体製造过程的监控与故障诊断方法,授权号:CN 102361014 B,2011年,
[2] 余建波,刘美芳,基于多路感测信息的设备健康状态评估与预测方法,专利申请号:201110171401.X,2011年,
[3] 余建波,尹纪庭,袁佳,城市LED照明控制系统,申请号201210366041.3,2012年,
[4] 尹纪庭,余建波,王小乐,一种LED智慧型调光装置及方法,申请号201210186556.5,2012年,
[5] 尹纪庭,余建波,基于Internet和Zigbee的智慧型家居控制系统,申请号201210448871.0,2012年。
声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:baisebaisebaise@yeah.net