当前位置首页 > 百科> 正文

参数检验

2019-06-15 17:45:50 百科
参数检验

参数检验

参数检验(parameter test)全称参数假设检验,是指对参数平均值、方差进行的统计检验。参数检验是推断统计的重要组成部分。当总体分布已知(如总体为常态分配),根据样本数据对总体分布的统计参数进行推断。

先由测得的样本数据计算检验统计量,若计算的统计量值落入约定显着性水平a 时的拒绝域内,说明被检参数之间在所约定的显着性水平a 下在统计上有显着性差异;反之, 若计算的统计量值落入约定显着性水平a 时的接受域内,说明被检参数之间在统计上没有显着性差异,是同一总体的参数估计值。

基本介绍

  • 中文名:参数检验
  • 外文名:parameter test
  • 属于:是推断统计的组成部分
  • 性质:参数平均值、方差进行的统计检验
  • 一级学科:数学
  • 二级学科:参数估计与假设检验

简介

参数检验,是数理统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显着性水平进行检验,作出拒绝或接受假设H0的判断。常用的假设检验方法有U检验法、T检验法、χ2检验法(卡方检验)、F检验法等。
参数假设检验又称统计假设检验,是一种基本的统计推断形式,也是数理统计学的一个重要的分支,用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。其基本原理是先对总体的特徵作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。

基本思想

参数假设检验的基本思想是小机率反证法思想。小机率思想是指小机率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为不假设成立。
假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合H0,称为原假设(常简称假设)。使命题A不成立的所有总体分布构成另一个集合H1,称为备择假设。如果H0可以通过有限个实参数来描述,则称为参数假设,否则称为非参数假设(见非参数统计)。如果H0(或H1)只包含一个分布,则称原假设(或备择假设)为简单假设,否则为複合假设。对一个假设H0进行检验,就是要制定一个规则,使得有了样本以后,根据这规则可以决定是接受它(承认命题A正确),还是拒绝它(否认命题A正确)。这样,所有可能的样本所组成的空间(称样本空间)被划分为两部分HA和HR(HA的补集),当样本x∈HA时,接受假设h0;当x∈HR时,拒绝H0。集合HR常称为检验的拒绝域,HA称为接受域。因此选定一个检验法,也就是选定一个拒绝域,故常把检验法本身与拒绝域HR等同起来。

参数检验运用範围

当总体分布已知(如总体为常态分配),根据样本数据对总体分布的统计参数进行推断。
此时,总体的分布形式是给定的或是假定的,只是其中一些参数的取值或範围未知,分析的主要目的是估计参数的取值,或对其进行某种统计检验。这类问题往往用参数检验来进行统计推断。它不仅仅能够对总体的特徵参数进行推断,还能够实现两个或多个总体的参数进行比较。

参数检验的步骤

1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。
H0:样本与总体或样本与样本间的差异是由抽样误差引起的;
H1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水準为0.05;当检验假设为真,但被错误地拒绝的机率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水準不显着,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水準显着,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
教学中的做法:
1.根据实际情况提出原假设和备择假设;
2.根据假设的特徵,选择合适的检验统计量;
3.根据样本观察值,计算检验统计量的观察值(obs);
4.选择许容显着性水平,并根据相应的统计量的统计分布表查出相应的临界值(ctrit);
5.根据检验统计量观察值的位置决定原假设取捨。
声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:baisebaisebaise@yeah.net