增强的多输入多输出技术是LTE-A中的关键技术。
随着LTE网路的部署和发展,在实际套用时需要考虑不同的场景,使用不同的基站进行覆盖,如宏基站、微基站和家庭基站。宏基站可以提供基本的覆盖要求,微基站可以用于提供大容量数据业务的支持。所以,未来网路构成是由多种制式、多种功率等级的基站构成的异构网路(Heterogeneous Network,HetNet)。在异构网路中,各种功率的基站间必然会存在干扰问题。传统的ICIC技术是解决LTE系统中干扰的一种方法,通过如软频率复用、控制下行发射功率等方式可以缓解同频宏网路部署时小区间干扰问题,但是它不能解决异构网路下的干扰问题。因此在LTE-Advanced系统中,增强的干扰协调技术(Enhanced ICIC,eICIC)被提出来进行广泛的研究,目的是解决异构网路场景下的各种複杂干扰问题。
基本介绍
- 中文名:增强的多输出多输出技术
- 外文名:enhanced multiple input multiple output
- 套用学科:通信
简介
要达到LTE-A提出的目标数据传输速率,需要通过增加天线数量以提高峰值频谱效率,即多天线技术,包括波束赋形和空间复用等。多天线技术是一种有效的提高系统容量和频谱利用率的方法。目前这方面最直接的方法是在基站站点上增加天线,即採用更高阶的MIMO技术。
在LTE阶段可以做到在基站侧设定4个天线,终端侧设定4个接收天线和1个发射天线,这样只能做到下行4×4、上行1×4。
为了进一步提高峰值频谱效率,LTE-A中的空间维度进一步扩展,并且对下行多用户MIMO进一步增强。具体来说,基站侧将增加到8个天线,终端侧增加到8个接收天线和4个发射天线,这样就可以做到下行8×8、上行4×8,从而进一步提高了下行传输的吞吐量和频谱效率。此外,LTE-A下行支持单用户MIMO和多用户MIMO的动态切换,同时通过增强型信道状态信息反馈和新的码本设计进一步增强了下行多用户MIMO的性能,如图12-5所示。

MIMO(多入多出技术)
多输入多输出MIMO(Multiple-InputMultiple-Output)系统是一项运用于802.11n的核心技术,用来描述多天线无线通信系统的抽象数学模型,能利用发射端的多个天线各自独立传送信号,同时在接收端用多个天线接收并恢复原信息。
802.11n是IEEE继802.11b\a\g后全新的无线区域网路技术,速度可达600Mbps。专有MIMO技术可改进已有802.11a/b/g网路的性能。该技术最早是由马可尼于1908年提出的,他利用多天线来抑制信道衰落(fading)。根据收发两端天线数量,相对于普通的单输入单输出系统(Single-InputSingle-Output,SISO),MIMO此类多天线技术尚包含早期所谓的“智慧型型天线”,亦即单输入多输出系统(Single-InputMulti-Output,SIMO)和多输入单输出系统(Multiple-InputSingle-Output,MISO)。
由于MIMO可以在不需要增加频宽或总传送功率耗损(transmitpowerexpenditure)的情况下大幅地增加系统的数据吞吐量(throughput)及传送距离,使得此技术于近几年受到许多瞩目。MIMO的核心概念为利用多根发射天线与多根接收天线所提供之空间自由度来有效提升无线通信系统之频谱效率,以提升传输速率并改善通信质量。
LTE-A
3GPPR8/R9版本LTE技术的标準化工作早已完成,目前版本已经非常稳定。从2009年开始,LTE技术正式进入了商用阶段。为了适应宽频移动通信的飞速发展,ITU提出了IMT-Advanced系统的概念,可以为用户在高速移动状态下提供100Mbit/s和低速移动状态下提供1Gbit/s的峰值速率,同IMT-2000系统相比性能大幅提升,IMT-Advanced系统也就是所谓的4G系统。ITU随后向全球徵集4G的候选方案。3GPP于2009年正式开始了一项研究工作,提出了LTE技术的增强版本R10LTE,也就是所谓的LTE-Advanced技术,通过自评估研究过程,最终于2009年9月向ITU提交了LTE-Advanced技术的自评估报告,希望该技术可以正式成为IMT-Advanced的候选技术。通过ITU的评估工作,LTE-Advanced技术正式成为4G技术的标準之一。
为满足ITU的要求,LTE-Advanced系统引入了较多的增强技术,使性能指标得到了大幅提升。
LTE
LTE概念
LTE(LongTermEvolution,长期演进),又称E-UTRA/E-UTRAN,和3GPP2UMB合称E3G(Evolved3G)
LTE是由3GPP(The3rdGenerationPartnershipProject,第三代合作伙伴计画)组织制定的UMTS(UniversalMobileTelecommunicationsSystem,通用移动通信系统)技术标準的长期演进,于2004年12月在3GPP多伦多TSGRAN#26会议上正式立项并启动。LTE系统引入了OFDM(OrthogonalFrequencyDivisionMultiplexing,正交频分复用)和MIMO(Multi-Input&Multi-Output,多输入多输出)等关键传输技术,显着增加了频谱效率和数据传输速率(20M频宽2X2MIMO在64QAM情况下,理论下行最大传输速率为201Mbps,除去信令开销后大概为140Mbps,但根据实际组网以及终端能力限制,一般认为下行峰值速率为100Mbps,上行为50Mbps),并支持多种频宽分配:1.4MHz,3MHz,5MHz,10MHz,15MHz和20MHz等,且支持全球主流2G/3G频段和一些新增频段,因而频谱分配更加灵活,系统容量和覆盖也显着提升。LTE系统网路架构更加扁平化简单化,减少了网路节点和系统複杂度,从而减小了系统时延,也降低了网路部署和维护成本。LTE系统支持与其他3GPP系统互操作。LTE系统有两种制式:FDD-LTE和TDD-LTE,即频分双工LTE系统和时分双工LTE系统,二者技术的主要区别在于空中接口的物理层上(像帧结构、时分设计、同步等)。FDD-LTE系统空口上下行传输採用一对对称的频段接收和传送数据,而TDD-LTE系统上下行则使用相同的频段在不同的时隙上传输,相对于FDD双工方式,TDD有着较高的频谱利用率。
LTE/EPC的网路架构如图2所示。

LTE系统结构
LTE採用由eNB构成的单层结构,这种结构有利于简化网路和减小延迟,实现低时延、低複杂度和低成本的要求。与3G接入网相比,LTE减少了RNC节点。名义上LTE是对3G的演进,但事实上它对3GPP的整个体系架构作了革命性的改变,逐步趋近于典型的IP宽频网路结构。
LTE的架构也叫E-UTRAN架构,如图3所示。E-UTRAN主要由eNB构成。同UTRAN网路相比,eNB不仅具有NodeB的功能,还能完成RNC的大部分功能,包括物理层、MAC层、RRC、调度、接入控制、承载控制、接入移动性管理和Inter-cellRRM等。eNodeB和eNodeB之间採用X2接口方式直接互连,eNB通过S1接口连线到EPC。具体地讲,eNB通过S1-MME连线到MME,通过S1-U连线到S-GW。S1接口支持MME/S-GW和eNB之间的多对多连线,即一个eNB可以和多个MME/S-GW连线,多个eNB也可以同时连线到同一个MME/S-GW。
